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Abstract Solute diffusion from a fracture into a porous rock with an altered zone
bordering the fracture is modeled by a system of two diffusion equations (one for the altered
zone and another for the intact porous matrix) with different coefficients of effective diffu-
sivity. Since experimental studies of diffusion into rock samples with altered zones indicate
that mathematical models of diffusion based on Fick’s law do not adequately describe the
concentration field in a sample, fractional order diffusion equations are chosen in this study
for modeling the anomalous mass transport in the rocks. In the case of significantly higher
porosity of the altered zone (e.g., this is typical for carbonates) the effective diffusivity here
can be much higher than the effective diffusivity of non-altered rocks. By introducing a small
parameter that is the ratio of effective diffusivities in the non-altered and altered regions and
applying the technique of perturbations, approximate analytical solutions for concentrations
in the altered zone bordering the fracture and in the intact surrounding rocks are obtained.
Based on these solutions, different regimes of diffusion into the rocks with different physical
properties are modeled and analyzed. It is shown that, using experimentally obtained data,
the orders of the fractional derivatives in the differential equations can be readily calibrated
for the every specific rock.
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1 Introduction

Flow and solute transport in fractured porous rocks has gained increasing interest in the last
few decades mostly due to concerns of the possible contamination of subsurface systems with
hazardous materials. The fractured porous medium is made up of ordinary porous rocks with
fractures in between them. In this medium, the contaminant is transported over long distances
by the fluid flow along the fractures; simultaneously, it slowly diffuses into the bordering
porous blocks. Penetration of the contaminant from water flowing along the fractures into the
porous rock between the conducting fractures is the most important retardation mechanism.
For instance, Neretnieks (1980) and Tang et al. (1981) have shown that this retardation effect
can be tremendous for absorbing radioactive nuclides, allowing them to decay to insignifi-
cance. This study focuses only on one, though very important, factor that affects the overall
mass transport in the fractured porous media; namely, on the contaminant diffusion from the
fracture into the bordering rock matrix and its peculiarities. Field observations (Sato 1999;
Sidle et al. 1998; Alexander 1992; Waber et al. 1998) show that the rock along fracture sur-
faces can be significantly altered. For example, in the case of carbonates, due to the mineral
dissolution, the porosity of the rock matrix bordering the fractures can be much greater than
within the intact regions, and this can substantially affect the diffusive transport of contam-
inants into surrounding rocks (Park et al. 2001; Steefel and Lichtner 1994, 1998a, b; Polak
et al. 2003). A schematic of the process of diffusion from a fracture into the porous matrix with
altered zone bordering the fracture is presented in Fig. 1. Conventional mathematical models
of contaminant diffusion in the porous rocks are based on Fick’s equation. However, recent
experimental studies of the contaminant diffusion in rock samples with narrow alteration
zones along the hydrothermal veins, extracted from the Kamaishi Mine, Iwate Prefecture,
Japan, demonstrate the anomalous decay of concentration with distance from the vein, dif-
ferent from what can be predicted by Fick’s equation (Yamamoto and Tsuchiya 2004). In
these experiments, the novel thermo-luminescence technique (Tsuchiya et al. 2000; Tsuchiya
and Nakatsuka 2002) coupled with the spectroscopic analysis of thermo-luminescence was
applied as a geochemical sensor to evaluate the mass transport from the vein into the rock
matrix. Experimental results for spatial distribution of concentration in a sample of porous
rock with an altered narrow region bordering the fracture are represented by circles in Fig. 2.
The predicted concentration obtained by solving the conventional diffusion equation based
on Fick’s law is presented in this figure by a dashed line. As it can be readily seen, Fick’s
law does not lead to the correct description of the contaminant concentration in the rock
sample. In the field experiments carried out by Becker and Shapiro (2000), Haggerty et al.
(2000), and Reimus et al. (2003) for the solute transport in highly heterogeneous media, the
solute concentration profiles exhibited faster-than-Fickian growth rates, skewness, and sharp
leading edges. These effects cannot be predicted by conventional mass transport equations. It
was demonstrated in a number of publications (e.g. Benson et al. 2000a, 2001; Schumer et al.
2003; Meerschaert et al. 1999; Herrick et al. 2002; Chao et al. 2000; Boggs et al. 1992, 1993;
Fomin et al. 2005) that fractional differential equations can simulate the anomalous character
of solute transport in highly heterogeneous media. The anomalous character of diffusion can
be mostly attributed to the complex heterogeneous structure of the rock matrix, which can
be considered as a fractal, and also to the complex mechanisms of sorption of solute on the
solid matrix. Diffusion in the media of fractal geometry was investigated extensively during
the recent years. Relatively full review of different approaches to this problem can be found,
for example, in Havlin and Ben-Avraham (2002). In Fomin et al. (2008a, b), it was mathe-
matically proved that diffusion on fractals should be modeled by the fractional differential
equation order of which depends on fractal dimension of the medium. A continuous time
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Fig. 1 A schematic of the process of diffusion from a fracture into the porous matrix with altered zone
bordering the fracture

random walk (CTRW) formalism has been previously applied to quantify chemical
transport in the porous and fractured geological formations (Berkowitz and Scher 1998, 1997,
1995; Margolin and Berkowitz 2000; Berkowitz et al. 2000). These studies demonstrated the
relevance and effectiveness of the CTRW approach by analyzing numerical simulations,
laboratory, and field measurements. Numerous authors (e.g. Hilfer and Anton 1995; Barkai
et al. 2000) showed that, in the asymptotic case (large time and/or distances), the CTRW
converges to fractional-order differential equations. Fractional differential equations, which
may be viewed as long-time and long-space limit of CTRW, were successfully applied to
describe anomalous diffusion phenomena in many areas (Metzler and Compte 2000; Met-
zler and Klafter 2000; Klafter et al. 1990; Meerschaert et al. 2002a, b, 2001; Saichev and
Zaslavsky 1997; Compte 1996; Benson et al. 2000a, b, 2001; del-Castillo-Negrete et al.
2003; Redner 1990; Havlin and Ben-Avraham 2002; Giona and Roman 1992; Fomin et al.
2005). As it was pointed out, “…fractional differential equations have two advantages over
a random walk approach: first, they allow one to explore various boundary conditions and,
second, to study diffusion and/or relaxation phenomena in external fields. Both possibilities
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Fig. 2 Relative concentration of the solute in the rock sample: comparison of the computed results with
experiment data (Solid line—non-Fickian anomalous diffusion modeled by fractional differential equations,
dashed line—Fickian diffusion modeled by classical diffusion equations when χ = γ = β = α = 1)

are difficult to realize in the framework of CTRW” (Chechkin et al. 2002). In this article,
the approach is based on application of fractional differential equations. The reported evi-
dences of the anomalous character of diffusion motivated us to apply the non-Fickian law of
diffusion with fractional order derivatives for analyzing the experimental data obtained by
Yamamoto and Tsuchiya (2004), who studied diffusion in a rock matrix composed of two
regions (a highly porous altered zone adjacent to the fracture and an intact, less porous rock).

2 Governing Equations

One-dimensional diffusion problem in the porous medium, when mass transport takes place
in the direction of x-axis, can be described by the following equation ∂c

∂τ
= − ∂

∂x (Jc), where
Jc is the diffusion flux, and c is the solute concentration, and τ is the time. Apparently, the
complexity of the porous matrix may lead to the sub-diffusive transport in the porous medium.
The latter phenomenon can be modeled by introducing the fractional time derivatives in the
equation of mass transport. In general, however, it cannot be ruled out that situations may
occur when dispersion in the porous medium exhibits a super-diffusive behavior. This can be
modeled by spatial fractional derivatives. Therefore, in order to account for both phenomena,
the following expression for the mass flux will be considered:

Jc = −d
∂1−γ

∂τ 1−γ

(
∂βc

∂xβ

)
, 0 < γ ≤ 1, 0 < β ≤ 1, (1)

where d is the effective diffusivity of the porous medium and parameters, γ and β, indi-
cate the order of the temporal and spatial fractional derivatives, respectively. For example,
γ = β = 1 corresponds to Fick’s law. According to Caputo’s definition, spatial and temporal
fractional derivatives in Eq. 1 can be represented by the following expressions (Samko et al.
1993):
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∂βc

∂xβ
=

∫ x

0

(x − ξ)−β

�(1 − β)

∂c

∂ξ
dξ,

∂γ c

∂τγ
=

∫ τ

0

(τ − ξ)−γ

�(1 − γ )

∂c

∂ξ
dξ, (2)

where �(x) is Gamma function (Abramowitz and Stegun 1972). Substituting expression (1)
into the equation of mass balance yields

∂c

∂τ
= ∂

∂x

(
d

∂1−γ

∂τ 1−γ

(
∂βc

∂xβ

))
, (3)

Applying to the both sides of Eq. 3, the operation of fractional integration (Samko et al. 1993)
leads to the following equation

∂γ c

∂τγ
= ∂

∂x

(
d

∂βc

∂xβ

)
, (4)

Equation 4 can be found in many publications related to anomalous diffusion phenomena and
will constitute the basis of our mathematical model of diffusion in a porous matrix bordering
a fracture. It is assumed that (i) a semi-infinite porous rock matrix [0,∞) is composed of two
regions of different porosity separated by the sharp interface, which can be approximated by
the straight line, e.g., x = x0; (ii) porosity of either region is uniform; (iii) porosity of the
altered region [0, x0] adjacent to the fracture surface x = 0 is much higher than the porosity
of the intact rock matrix [x0,∞). As a result, the effective diffusivity in the former region d1

is much higher than that in the latter zone d2 (i.e. d1 >> d2). Concentration of the diffusing
substance c0 at the surface x = 0 is sustained at a uniform level over the entire process. Along
with big differences in porosities of the two regions, other physical properties of the porous
media within these regions also might be significantly different (e.g., these regions might
have different geometries of pores, different types of heterogeneities, different distributions
of the pores, and micro-cracks, etc (Yu and Cheng 2002; Katz and Tompson 1985)). As
mentioned above, these features can be modeled by fractional derivatives of different orders
with respect to time and/or space in the mass flux equations. Accounting for the anomalous
sub-diffusive and, for the sake of generality, for the possibly super-diffusive transport in both
altered and intact regions, the mathematical model of anomalous diffusion in the porous
rocks bordering the fracture (see Fig. 1) can be presented in the following form

∂χ c1

∂τχ
= d1

∂

∂x

[
∂αc1

∂xα

]
, 0 < x < x0, τ > 0; (0 < α ≤ 1, 0 < χ ≤ 1); (5)

∂γ c2

∂τγ
= d2

∂

∂x

[
∂βc2

∂xβ

]
, x0 < x < ∞, τ > 0; (0 < β ≤ 1, 0 < γ ≤ 1); (6)

τ = 0, c1 = c2 = 0; (7)

x = 0, c1 = c0; (8)

x = x0, c1 = c2, m(1)d1
∂1−χ

∂τ 1−χ

(
∂αc1

∂xα

)
= m(2)d2

∂1−γ

∂τ 1−γ

(
∂βc2

∂xβ

)
; (9)

x → ∞, c2 → 0; (10)

where c1 and c2 are the concentrations in the altered, (0, x0), and non-altered, (x0,∞),
regions of the rock matrix, respectively; τ [T] is time; x[L] is the spatial coordinate, and
d1[L1+α/Tχ ] and d2[L1+β/Tγ ] are the effective diffusivities of solute in the altered and non-
altered regions, respectively, and m(1) and m(2) are the porosities of the altered and non-altered
regions, respectively. (In the above notation, expressions in square brackets denote dimen-
sions of the variables, i.e., T and L are the dimensions of time and spatial variables, respec-
tively). The fractional derivatives in Eqs. 5 and 6 are defined by expressions (2). The
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conditions of conjugation on the interface (9) model the mass conservation law on the
interface of the two media with different physical properties and represent the fact that the
values of concentration and diffusive mass flux, which is defined by Eq. 1, remain the same
on the both sides of the interface. It is worth noting that the mathematical model (5)–(10) is
one-dimensional. The accuracy of this natural approximation can be readily justified by the
fact that concentration gradients in the rock matrix adjacent to the fracture in x-direction are
much greater than gradients along the fracture (e.g., Tang et al. 1981; Grisak and Pickens
1981; Rahman et al. 2004; Neretnieks 1980). In order to convert the boundary-value problem
(5)–(10) to non-dimensional form, the proper characteristic scales should be defined. Since
concentrations in both regions (0, x0) and (x0,∞) are of concern, x0 can be chosen as a
scale for the variable x and, for the same reason, τ0 = (x1+β

0 /d2)
1/γ can then be taken as

a characteristic scale for the time variable. Based on the above scales, the non-dimensional
variables can be introduced as

Ci = ci

c0
; t = τ

τ0
= τd1/γ

2

x (1+β)/γ
0

; X = x

x0
; ε = dχ/γ

2

d1
x1+α−(1+β)χ/γ

0 ;

Km = m(2)

m(1)
· (11)

As a result, the non-dimensional mathematical model of diffusion in the rocks bordering the
fracture can be presented in the following form:

εDχ
t C1 = Dα+1

X C1, 0 < X < 1, t > 0; (12)

Dγ
t C2 = Dβ+1

X C2, X > 1, t > 0; (13)

t = 0, C1 = C2 = 0; (14)

X = 0, C1 = 1; (15)

X = 1, C1 = C2, D1−χ
t Dα

X C1 = εKm D1−γ
t Dβ

X C2; (16)

X → ∞, C2 → 0; (17)

where the following notation for the fractional derivatives defined by Eq. 2 is
employed, namely, Dα

X C = ∂αC
∂ Xα , Dχ

t C = ∂χ C
∂tχ . In the particular case, when χ = γ =

α = β = 1, the boundary-value problem (12)–(17) admits an exact analytical solution,
which is derived in Appendix A. This solution can be used for verifying the accuracy of the
approximate asymptotic solution found in the next section.

3 Approximate Solution

Presence of the small parameter ε in Eqs. 12–17 allows application of the method of pertur-
bations for their solution. Solutions can be sought in the form of asymptotic series:

C1(X, t) =
∞∑

k=0

Uk(X, t)εk, C2(X, t) =
∞∑

k=0

Vk(X, t)εk · (18)

where Uk(X, t) and Vk(X, t) are the unknown functions, which will be defined later. Since
the small parameter in the left-hand side of Eq. 12 is the coefficient before the derivative of
concentration, C1, with respect to time, it may happen that the solution for C1, obtained in
the form of series (18), will not satisfy the initial condition (14). This is the so-called outer
solution. In order to obtain a uniform approximation, the inner solution that is valid in the
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vicinity of t = 0 should be found. This can be done by selecting a newly scaled time variable,
t∗ = t/φ(ε), where function φ(ε) should be determined from the analysis of the problem
peculiarities. Finally, the uniform approximation can be formed by adding the inner and outer
solutions and then subtracting their common limit. However, since the diffusive transport is a

very slow process (it follows from the fact that the characteristic time of diffusion, τ0 = x2
0

d2
,

is large), early time contamination of the rock by hazardous materials is insignificant. There-
fore, longer periods of contamination, when the contaminant in big amounts can penetrate
into the intact rock matrix, should be of the major concern. Apparently, in the latter case, the
outer solution is sufficiently accurate. Furthermore, by comparison with an exact solution
found for χ = γ = α = β = 1, it will be shown that the outer solution is accurate enough
within a wide range of variation of t and even for very short times (t << 1). Substituting the
asymptotic series (18) into Eqs. 12–17 and collecting terms of the same order leads to the
following set of boundary-value problems for Uk and Vk (where k = 1, 2, 3 · · · ):

for k = 0,

Dα+1
X U0 = 0, 0 < X < 1, t > 0; X = 0, U0 = 1; X = 1, Dα

X U0 = 0; (19)

Dγ
t V0 = Dβ+1

X V0, 1 < X < ∞, t > 0; t = 0, V0 = 0; X = 1, V0 = U0;
X → ∞, V0 → 0; (20)

for an arbitrary k ≥ 1,

Dα+1
X Uk = Dχ

t Uk−1, 0 < X < 1, t > 0; X = 0, Uk = 0; X = 1,

D1−χ
t Dα

X Uk = Km D1−γ
t Dβ

X Vk−1; (21)

Dγ
t Vk = Dβ+1

X Vk, 1 < X < ∞, t > 0; t = 0, Vk = O;
X = 1, Vk = Uk; X → ∞, Vk → 0· (22)

From Eq. 19, it immediately follows that U0 ≡ 1. Solution of the boundary-value problem
(20) is not so straightforward. Introducing a new independent variable, η = (X −1)t−γ /(1+β),
this problem can be converted to the boundary-value problem for the ordinary differential
regarding the function V0 of one variable, V0 = V0(η). Unfortunately, the resulting equation
is rather awkward and cannot be easily integrated analytically. Another approach that can
lead to solution is the direct application of Laplace transform with respect to variable t to the
Eq. 20 in its original form. Using the well-documented properties of Laplace transform, the
differential Eq. 20 can be converted to the following ordinary differential equation

sγ V̄0 − ∂

∂ X

(
∂β V̄0

∂ Xβ

)
= 0, (23)

where V̄0(X, s) = L[V0(X, t)] is Laplace transform of the function V0 with respect to the
independent variable t . In order to find the unique solution of Eq. 23, we have to account for
the boundary conditions for V̄0. One boundary condition follows from the fact that the solu-
tion vanishes as X → ∞, and the other can be obtained by applying the Laplace transform
to the condition of the constant concentration on the interface (i.e. X = 1, V0(1, t) = 1).
Laplace transformation gives: V̄0(1, s) = s−1. The problem similar to the boundary-value
problem for Eq. 23 is considered in Appendix C. Its solution is determined by Eq. C12:

V̄0(X, s) = s−1[Eβ+1(s
γ (X − 1)β+‘1)

−(sγ (X − 1)β+1)β/(β+1)Eβ+1,β+1(s
γ (X − 1)β+1)] (24)
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where Eβ+1(z) and Eβ+1,β+1(z) are Mittag-Leffler functions (Appendix C). Applying the
inverse Laplace transform, denoted byL−1[·], to the Eq. 24 yields:

L−1[V̄0(X, s)] = {L−1[s−1 Eβ+1(s
γ (X − 1)β+‘1)]

−L−1[s−1(sγ (X − 1)β+1)β/(β+1)Eβ+1,β+1(s
γ (X − 1)β+1)]} (25)

Evaluation of the inverse Laplace transform can be performed by using the presentation of
Mittag-Leffler functions in a form of power series, consequently applying the inverse Laplace
transform to each of the terms in the series. Evaluating the first term in the right-hand side
of Eq. 25, gives

L−1[s−1 Eβ+1(s
γ Xβ+‘1)] =

∞∑
j=0

(
(X − 1)β+1t−γ

) j

�[(β + 1) j + 1]�(1 − γ j)
, (26)

The series (26) can be expressed through the new function W a1,b1
a2,b2

(z)defined in Appendix D.
Since in our case a1 = 1, a2 = β + 1, b1 = γ , and b2 = 1, expression (26) can be presented
as

L−1[s−1 Eβ+1(s
γ (X − 1)β+‘1)] = W 1,γ

β+1,1((X − 1)β+1/tγ )· (27)

It should be noted that function W a1,b1
a2,b2

(z) is defined only for a2 − b1 > 0. In the case under
consideration, since 0 < β, γ < 1, a2 − b1 = 1 + β − γ > 0. Analogously to the above,
then

L−1[s−1+βγ/(β+1)(X − 1)β Eβ+1,β+1(s
γ Xβ+‘1)]

= ((X − 1)β+1/tγ )β/(β+1)W 1−βγ/(β+1),γ
β+1,β+1 ((X − 1)β+1/tγ )· (28)

Using correlations (27), (28), and (24), solution of the boundary-value problem (20), V0(X, t)
= L−1[V̄0(X, s)] can be presented as a function of one variable η, V0(X, t) = ω(η):

V0(X, t) = ω(η) = W 1,γ
β+1,1(η

γ ) − ηγβ/(β+1)W 1−βγ/(β+1),γ
β+1,β+1 (ηγ ), (29)

where η = (X − 1)(β+1)/γ /t .
From the Eq. 29, accounting for the definition of Caputo fractional derivative (2), the

fractional derivative of V0(X, t) = ω(η) at X = 1 can be presented as

Dβ
X V0

∣∣∣
X=1

= ∂β V0

∂ Xβ

∣∣∣∣
X=1

= t−γβ/(β+1) ∂
βω(η)

∂ηβ

∣∣∣∣
η=0

= −t−γβ/(β+1)

�[1 − γβ/(1 + β)] · (30)

Once V0, Dβ
X V0

∣∣∣
X=1

, and U0 are found, the boundary-value problem for U1, which follows

from (21), reduces to the following one:

Dα+1
X U1 = 0, 0 < X < 1, t > 0; (31)

X = 0, U1 = 0; X = 1, D1−χ
t Dα

X U1 = − D1−γ
t (t−βγ/(1+β))Km

� (1 − γβ/(1 + β))
· (32)

It can be readily shown that Dλ
t tµ = − �(λ+1)tµ−λ

�(1+(µ−λ))
and, therefore, the boundary condition

for the flux at X = 1 can be rewritten in the form

X = 1, D1−χ
t Dα

X U1 = − t−1+γ /(1+β)Km

� (γ /(1 + β))
, (33)
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Applying an operation of fractional integration with respect to time (Samko et al. 1993) to
the Eq. 33 yields

X = 1, Dα
X U1 = − t−χ+γ /(1+β)Km

� (1 − χ + γ /(1 + β))
+ At−χ · (34)

where A is a constant of integration, which is due to the initial condition which should vanish.
Accounting for the expression (34), where A = 0, solution of the problems (31) and (32) is
rather straightforward:

U1(X, t) = − Xαt−χ+γ /(1+β)Km

�
[
1 − χ + γ /(1 + β)

]
�(1 + α)

· (35)

As a result of this solution, the boundary-value problem for V1, which follows from the
formulae (22), where k should be set equal to 1, can be represented as

Dγ
t V1 = Dβ+1

X V1, 1 < X < ∞, t > 0; (36)

t = 0, V1 = 0; X = 1,

V1 = U1 = − t−χ+γ /(1+β)Km

�
[
1 − χ + γ /(1 + β)

]
�(1 + α)

; X → ∞, V1 → 0· (37)

Solution of the problem (36) and (37) can be sought in the following form:

V1(X, t) = − Kmt−χ+γ /(1+β)

� (1 − χ + γ /(1 + β)) �(1 + α)
f (η), (38)

where f (η) is an unknown function of one variable η = X−1
tγ /(1+β) . Analogously to the above,

it can be readily shown that

f (η) = W
1−χ+ γ

1+β
,γ

β+1,1 (η1+β) − ηβ W
1−χ+ γ (1−β)

1+β
,γ

β+1,β+1 (η1+β)· (39)

Finally, solution of the problem in both altered and intact regions with an accuracy of
O(ε2)can be presented in the following form:

C1(X, t) = 1 − εKm Xαt−χ+γ /(1+β)

�
[
1 − χ + γ /(1 + β)

]
�(1 + α)

+ O(ε2), 0 < X < 1, t > 0, (40)

C2(X, t) = ω

(
X − 1

tγ /(1+β)

)
− εKm t−χ+γ /(1+β)

�
[
1 − χ + γ /(1 + β)

]
�(1 + α)

f

(
X − 1

tγ /(1+β)

)

+ O(ε2), 1 < X < ∞, t > 0, (41)

where ω and f are defined by Eqs. 29 and 39 respectively.
The important particular case, when mass transport exhibits only a subdiffusive char-

acter, can be obtained from the solutions (40) and (41) by substituting there and in Eqs.
29 and 39 parameters α = β = 1. It is interesting to note that, when α = β = 1, the
boundary-value problem (20) for V0 and the boundary-value problems (36) and (37) for V1

admit solutions in an integral form. For α = β = 1, solution of the Eq. 23 in transforms is
V̄0(X, s) = s−1 exp[−sγ /2(X −1)] and, hence, application of the inverse Laplace transform
L−1[V̄0] leads to the following expression:
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V0(X, t) = 1

π

∫ t

0
dτ

∫ ∞

0
e−τξ exp[−(X − 1)ξγ/2 cos(

γ π

2
)] sin[(X − 1)ξγ/2 sin(

γ π

2
)]dξ

= 1 − 1

π

∫ ∞

0

e−tξ

ξ
exp[−(X − 1)ξγ/2 cos(

γ π

2
)] sin[(X − 1)ξγ/2 sin(

γ π

2
)]dξ =

(42)

Analogously to the above, if α = β = 1, application of Laplace transform to the problems
(36) and (37), gives V̄1(X, s) = −Kms−1+χ−γ /2 exp[−sγ /2(X − 1)]. Hence, the inverse
transformation leads to the formula

V1(X, t) = − Km

π�(1 − χ + γ /2)

∫ ∞

0
exp[−(X − 1)ξγ/2 cos(

γ π

2
)]

× sin[(X − 1)ξγ/2 sin(
γ π

2
)]dξ

∫ t

0
e−τξ (t − τ)−χ+γ /2dτ (43)

So in the latter case, Eq. 41 can be replaced by

C2(X, t) = V0(X, t) + V1(X, t)ε (44)

where V0 and V1 are defined by the integrals (42) and (43).
It can be easily shown (Appendix B) that in the particular case of Fickian diffusion, when

γ = χ = α = β = 1, Eqs. 40 and 41 can be substantially simplified:

C1(X, t) = 1 − εKm X√
π t

+ O(ε2), (45)

C2(X, t) = erfc

(
X − 1

2
√

t

)
− ε Km√

π t
exp

[
− (X − 1)2

4t

]
+ O(ε2)· (46)

4 Numerical Results and Discussion

Particular solutions (42)–(46) can be used for testing the accuracy of the general solutions
(40) and (41). The numerical experiments with Eqs. 40, 41, 39, and (29) show that, in the
particular case, when γ = χ = α = β = 1, the computed functions ω and f coincide up
to the 10th decimal place with their exact values erfc(η/2) and exp(−η2/4), respectively.
Hence, for γ = χ = α = β = 1, solutions (40) and (41) coincide with solutions (45) and
(46).

As mentioned above, the formulae (40) and (41) represent the outer asymptotic solu-
tions of the boundary-value problem (12)–(17). Therefore, it might be expected that these
solutions are only valid for sufficiently large times. However, numerical computations dem-
onstrate that these solutions are accurate enough for all finite times and can be used even
for relatively short durations (t < 1). The applicability of the outer asymptotic solutions
for modeling diffusion at the initial moments of time (t < 1) can be justified by comparing
these solutions with exact solutions (A5) and (A6) obtained in Appendix A for the case when
γ = χ = α = β = 1. The numerical computations based on the approximate Eqs. 42 and 43
and on exact formulae (A5) and (A6) are presented in Fig. 3a–c by dashed and solid curves,
respectively. Observing the graphs in Fig. 3a, which correspond to ε = 0.01, it can be readily
seen that for very short values of parameter ε, the exact (solid lines) and asymptotic (dashed
lines) solutions nearly coincide already at very short times (t = 0.02). For the greater values
of ε(ε = 0.05), the discrepancy between these solutions slightly increases for the very short
times. However, starting from t = 0.08, the agreement between the asymptotic and exact
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Fig. 3 (a–c) Comparison of exact (A5), (A6), and asymptotic solutions (45), (46) for Fickian diffusion at
short times

solutions is already good, and for t = 0.15, the solutions are again in perfect consistency
(see Fig. 3b, c). These results indicate that the obtained asymptotic solutions are suitable
for modeling the non-Fickian diffusion shortly after the onset of diffusion. It is interesting
to note that accuracy of the approximate solution is sufficiently good even for ε close to
unity since every term of asymptotic expansion (except the leading term) is factored by Km ,
which is less than unity for the process under consideration. Furthermore, each k-th term
in the asymptotic expansion is proportional to the expression εk t−kσ , where the value of
σ > 0 can be found by constructing the next terms in the asymptotic expansions. Therefore,
even assuming hypothetically that ε = Km = 1, there exists such a moment of time starting
from which the accuracy of the asymptotic formulae will be sufficiently good. This fact is
illustrated by computations presented in Fig. 3, though the computations are made for the
small values of ε.
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Parameters α, β, γ , and χ in the obtained solutions can be defined by accounting for the
typical physical properties of the specific rock. If the spatial distribution of concentration
in the rock is measured experimentally at the given moment of time, then these unknown
parameters can be readily determined by comparing the experimentally and theoretically
obtained concentration distributions. This process is known as calibration of the model for
the specific rock formation. It can be performed, for example, by minimizing the root mean
square deviation, D, between the computed values and experimental data,

D =
[

m∑
i=1

(
C1(Xi , t0) − C∗

i

)2 +
n∑

i=m+1

(
C2(Xi , t0) − C∗

i

)2

]1/2

(47)

where C∗
i (i = 1, 2, . . ., n) are the experimentally measured values of concentration at n

points X = Xi of the rock sample, the value of summation index i = m corresponds to
location of the altered-intact interface between altered and intact zones (i.e. X = Xm = 1),
C1 and C2 are computed by the formulae (40) and (41), respectively. The minimum of D and
the corresponding values of controlling parameters α, β, γ , and χ can be easily computed
by using the standard numerical optimization operators available in Mathematica computer
algebra system. For instance, considering the experimental results of Yamamoto and Tsuchiya
(2004) (the contaminant diffusion in rock samples with narrow alteration zones along the
hydrothermal veins), which are indicated by dots in Fig. 2, it can be readily seen that the root
mean square deviation between the computed and experimental data, D, reaches its minimal
value 0.057 at β = 0.7, γ = 0.4, α = 0.4, and χ = 0.3. The corresponding concentration
distribution obtained from the formulae in the solutions (40) and (41), which is presented by
a solid line in Fig. 2, demonstrates a very good agreement with experimental results. For the
Fickian diffusion (solutions (45) and (46)), the root mean square deviation D = 0.09, which
is almost two times bigger than in the case of non-Fickian diffusion with optimal values of
controlling parameters β, γ, α, and χ . Hence, it can be concluded that for the rock sample
from the Kamaishi Mine, Iwate Prefecture, Japan, the mass flux in the narrow altered zone
can be modeled by the fractional derivatives of order α = 0.4, χ = 0.3, whereas, for the
diffusive transport in the intact rock, the spatial and temporal fractional derivatives should
be defined by the parameters β = 1 and γ = 0.5, respectively. Sensitivity of the asymptotic
solutions (40) and (41) to the variation of parameters α and β, which define the order of the
spatial fractional derivatives, is illustrated in Fig. 4a, b. For the fractional derivatives of the
smaller order, the graphs of solutions demonstrate a sharp decline of concentration in
the intact rocks near the altered region. In this case, the concentration curves have greater
skewness and heavier tails. This is consistent with results of previous studies of fractional
order equations. Figure 4a demonstrates that accounting for the non-Fickian transport in the
intact rock will affect diffusion in the altered zone even in the case when diffusion in the
altered zone is modeled by of the Fick’s law (α = 1). Although the concentration profile in
the altered region in the latter case is linear, it does not exactly follow the conventional Fickian
distribution presented by the solid line. For the case of Fickian diffusion in the altered region
(Fig. 4a), it is interesting to note that at the greater times (t > 1) Fickian diffusion leads to
a higher concentration in the altered region and in the intact rocks near this region, whereas
for the shorter times (t < 0.1) the Fick’s law leads to the lower values of concentration in
the altered zone and higher values in the intact rock. In the case when diffusion in the altered
region is non-Fickian (Fig. 4b), concentration curves in the altered zone also demonstrate
some moderate skewness, though this effect is not so pronounced as in the intact region.
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Fig. 4 (a, b) Variation of concentration in the direction perpendicular to the fracture computed by Eqs. 40
and 41: illustration of sensitivity of the non-Fickian model to variation of the orders of fractional derivatives

5 Conclusions

The following conclusions can be drawn:
Using the fractional order diffusion equations, the non-Fickian anomalous mass trans-

port in the porous rocks with altered region bordering the fracture is modeled; closed-form
solutions of the governing fractional differential equations are obtained.

The accuracy of the outer asymptotic solutions of non-Fickian diffusion for small times
is proved by comparison with exact analytical solutions available for the particular case
of Fickian diffusion (γ = χ = β = α = 1). This result confirms the applicability of
the obtained solutions for modeling solute transport in a heterogeneous porous medium of
complex geometry for all the moments of time of practical importance.

Introducing a fractional derivative into the equation of mass transport in a porous medium
leads to the model that is capable to describe the mechanisms of anomalous diffusion. This
model can be properly calibrated for simulating diffusion in the specific rock formation by
choosing the appropriate order of fractional derivative, which provides the best fit between
the measured and calculated concentration distributions.

The complex phenomena of anomalous diffusion in the heterogeneous rock matrix can
be effectively modeled by choosing the proper values of parameters β, α, γ , and χ , which
simulate the properties of the porous media and solute.

Appendix A: An Exact Solution of the Fickian Diffusion Problem
(α = β = χ = γ = 1, Km = 1)

In the particular case when α = β = χ = γ = 1, the boundary-value problem (12)–(17) can
be solved by Laplace transformation with respect to t . For Laplace transforms, the problem
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(12)–(17) reduces to

εsC1 = d2C1

d X2 , sC2 = d2C2

d X2 , (A1)

X = 0, C1 = 1/s; X = 1, C1 = C2, ∂C1/∂ X = ε(∂C2/∂ X); X → ∞, C2 → 0;
(A2)

where a bar above a variable indicates a function after application of Laplace transform L ,
e.g., C = L[C], and s is the Laplace variable, which corresponds to the variable t .

Solution of Eq. A1 with boundary conditions (A2) is rather straightforward:

sC1 = (1 − √
ε)e−√

s[1+√
ε(1−X)] + (1 + √

ε)e−√
s[1−√

ε(1−X)]

(1 − √
ε)e−√

s(1+√
ε) + (1 + √

ε)e−√
s(1−√

ε)
, 0 < X < 1, (A3)

sC2 = 2e−√
s X

(1 − √
ε)e−√

s(1+√
ε) + (1 + √

ε)e−√
s(1−√

ε)
, X > 1, (A4)

Converting Eq. A4 to the following form

sC2 = e−√
s(X−1+√

ε)

(1 + √
ε)

2

1 + [(1 − √
ε)/(1 + √

ε)]e−2
√

εs

= 2
e−√

s(X−1+√
ε)

(1 + √
ε)

∞∑
k=0

(−1)k
(

1 − √
ε

1 + √
ε

)k

e−2k
√

εs

= 2

(1 + √
ε)

∞∑
k=0

(−1)k
(

1 − √
ε

1 + √
ε

)k

exp[−√
s(X − 1 + √

ε + 2k
√

ε)].

and applying to it the inverse Laplace transform, L−1, yields

C2(X, t) = 2

(1 + √
ε)

∞∑
k=0

(−1)k
(

1 − √
ε

1 + √
ε

)k

erfc

[
X − 1 + √

ε(1 + 2k)

2
√

t

]
. (A5)

Analogously, since Eq. A3 can be rewritten as

sC1 = 1 − √
ε

1 + √
ε

e−√
sε(2−X)

∞∑
k=0

(−1)k
(

1 − √
ε

1 + √
ε

)k

e−2k
√

εs

+ e−√
sεX

∞∑
k=0

(−1)k
(

1 − √
ε

1 + √
ε

)k

e−2k
√

εs,

its inverse Laplace transformation gives

C1(X, t) = erfc

[√
εX

2
√

t

]
+

∞∑
k=1

(−1)k
(

1 − √
ε

1 + √
ε

)k {
erfc

[√
ε(2k + X)

2
√

t

]

− erfc

[√
ε(2k − X)

2
√

t

]}
· (A6)

Formulae (A5) and (A6) present the exact closed-form solution of the boundary-value prob-
lem (12)–(17) for the case of Fickian diffusion when α = β = χ = γ = 1.
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Appendix B: An Approximate Solution for the Fickian Diffusion
(α = β = χ = γ = 1, Km = 1)

An approximate solution (45), (46) of the boundary-value problem (12)–(17), for the partic-
ular case when α = β = χ = γ = 1, is obtained by using the perturbation technique, similar
to how it was done above. This means that from Eqs. 19 and 20 it follows that U0 ≡ 1 and

V0 = erfc
(

X−1
2
√

t

)
. Evaluating Eq. 21 for k ≥1 gives the following recurrent formula:

Uk(X, t) = ∂

∂t

∫ X

0
(X − ξ)Uk−1dξ + ∂Vk−1

∂ X

∣∣∣∣
X=1

X. (B1)

From Eq. 22, accounting for the Duhamel’s theorem (Carslaw and Jaeger 1959), it follows
that

Vk(X, t) = ∂

∂t

∫ t

0
Uk(X, τ ) erfc

(
X − 1

2
√

t − τ

)
dτ. (B2)

Equations B1 and B2 in the particular case when k=1 give

U1 = − X√
π t

,

V1(X, t) = − ∂

∂t

∫ t

0

X√
π t

erfc

(
X − 1

2
√

t − τ

)
dτ = − 1√

π t
e− (X−1)2

4t .

As a result, with an accuracy of O(ε2), the approximate solution can be written as

C1 = 1 − X√
π t

ε + O(ε2), (B3)

C2(X, t) = erfc

(
X − 1

2
√

t − τ

)
− ε√

π t
e− (X−1)2

4t + O(ε2). (B4)

Appendix C: Solution of the Boundary-Value Problem for the Eq. 23

Denoting for simplicity in Eq. 23 and corresponding boundary conditions, p = V̄0, p0 =
s−1, λ = sγ , and X̃ = X − 1, leads to the following boundary-value problem:

d

d X̃

(
dβ p

d X̃β

)
− λp = 0; 0 < β < 1, (C1)

X̃ = 0, p = p0; X̃ → ∞, p → 0 (C2)

where dβ p
d X̃β

is the fractional derivative of the order β.

After application of Laplace transform with respect to the variable X̃ , Eq. C1 takes the
following form

s[sβ p̂ − sβ−1 p0] − q0 − λ p̂ = 0, (C3)

where p̂ = L[p] is Laplace transform of function p regarding the spatial variable X and

q0 = dβ p
d Xβ

∣∣∣
X=1

is an unknown constant. Equation C3 gives

p̂ = p0
sβ

sβ+1 − λ
+ q0

1

sβ+1 − λ
. (C4)
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At this point, it is convenient to introduce Mittag-Leffler functions defined by the series that
are valid in the whole complex plane C (Samko et al. 1993):

Eα(z) ≡
∞∑

n=0

zn

�(αn + 1)
; Eα,β(z) ≡

∞∑
n=0

zn

�(αn + β)
, α > 0, β > 0, z ∈ C. (C5)

Mittag-Leffler functions are connected to the Laplace integral through equations

L[Eα(−λtα)] = sα−1/(sα + λ), Res > |λ|1/α ,
(C6)

L[tβ−1 Eα,β(−λtα)] = sα−β/(sα + λ), Res > |λ|1/α .

Accounting for the relationships (C6), Eq. C3 yields

p(X̃ , λ) = p0 Eβ+1(λX̃β+1) + q0 X̃β Eβ+1,β+1(λX̃β+1). (C7)

Taking into account the properties of Mittag-Leffler functions (Samko et al. 1993), it can
be readily shown that

λX̃β Eβ+1,β+1(λX̃β+1) = d

d X̃
[Eβ+1(λX̃β+1)]. (C8)

Formula (C7) defines the general solution of Eq. C1. In order to find the solution, which
satisfies conditions at infinity, P → 0, X̃ → ∞, the following asymptotic representations
of Mittag-Leffler functions can be utilized:

Eα,β(z) = z(1−β)/α

α
exp(z1/α) −

∞∑
k=1

z−k

�(β − kα)
, |z| → ∞, |arg z| < απ/2,

Eα,β(z) = −
∞∑

k=1

z−k

�(β − kα)
, |z| → ∞, απ/2 < arg z < 2π − απ/2.

(C9)

where 0 < α < 2.
From the Eqs. C7–C9, it follows that

lim
X̃→∞

p(X̃ , λ) = (p0 + q0λ
−β/(1+β)) lim

X̃→∞
[(β + 1)−1 exp(λ1/(1+β) X̃)] = 0. (C10)

The last condition can be satisfied, if the expression (p0 + q0λ
−β/(1+β)) is equal to zero.

Therefore, q0 = −p0λ
β/(1+β) and solution (C7) of the boundary-value problem (C1) and

(C2) can be presented as

p(X̃ , λ) = p0

[
Eβ+1(λX̃β+1) − λβ/(1+β) X̃β Eβ+1,β+1(λX̃β+1)

]
. (C11)

Hence, returning back from p(X̃ , λ) to the variable V̄0(X, s), Eq. C11 yields

V̄0(X, s) = s−1[Eβ+1(s
γ (X − 1)β+‘1)

− (sγ (X − 1)β+1)β/(β+1)Eβ+1,β+1(s
γ (X − 1)β+1)] (C12)

Appendix D: Definition of the Function W a1,b1
a2,b2

(z)

Let us consider a series

W a1,b1
a2,b2

(z) =
∞∑

k=0

zk

�(a2k + b2)�(a1 − b1k)
, a2, b2, b1 > 0. (D1)
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Using the Stirling’s formula for the Gamma function (Abramowitz and Stegun 1972),

�(z + 1) = √
2π |z|z+1/2 exp(−z)[1 + O(|z|−1)], (D2)

it can be shown that

|�(a2k + b2)�(a1 − b1k)|
∼ (

√
2π)2−a2+b1

(
aa2

2 b−b1
1

)k
ab2−1/2

2 ba1−1/2
1 (k!)a2−b1 kb2+a1−1−(a2−b1)/2. (D3)

Substituting formula (D3) into the series (D1), it can be readily seen that the series abso-
lutely converges along with the following series

∞∑
k=0

uk =
∞∑

k=0

∣∣ẑ∣∣k

(k!)a2−b1 kχ
, (D4)

where ẑ = (zbb1
1 /aa2

2 ), χ = b2 + a1 − 1 − (a2 − b1)/2.

Apparently, for the series (D4), the following relationship can be easily validated:

k

(
uk

uk+1
− 1

)
∼ k1+a2−b1∣∣ẑ∣∣

(
1 − ∣∣ẑ∣∣ k−(a2−b1)

)
, k → ∞. (D5)

From the formula (D5), it follows that if (a2 − b1) >0, then, for any positive constant A
and ẑ < ∞, there exists a number N , such that the following inequality is satisfied

k

(
uk

uk+1
− 1

)
≥ A > 1, (k > N ) . (D6)

Therefore, according to the Raabe’s test (Arfken 1985), series (D4) and (D1) converge
for any finite z. If (a2 − b1) < 0, the series (D4) diverges and, therefore, the series(D1)
does not converge absolutely. If a2 = b1, the series (D4) converges only when

∣∣ẑ∣∣ < 1 and,
consequently, the series (D1), converges absolutely only for |z| < 1. Thus, if a2 > b1, the
series (D1) converges absolutely and, therefore, function W a1,b1

a2,b2
(z) is defined for any finite z.
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